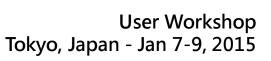


Globe at Night - Sky Brightness Monitoring Network

User Workshop Tokyo, Japan - Jan 7-9, 2015

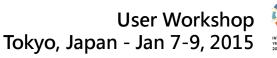

Introduction to data analysis of Globe at Night - Sky Brightness Monitoring Network

Dr SO Chu-wing The University of Hong Kong

Introduction to data analysis of Globe at Night Network

- NSB database
 - User login
 - Data structure
- Basic analysis
 - Statistics
 - Temporal variations of NSB
 - Short-term
 - Long-term
 - Geographical variations of NSB
 - Cross-city analysis

NSB database - User login


- All NSB data collected are obtainable from a database namely *iyl* via an user-friendly web-based interface *adminer*
 - IP address: (to be announced in the workshop/ later)
 - Login username: (to be announced in the workshop / later)
 - Password: (to be announced in the workshop / later)
- Database management system: MySQL
- Limited privileges

- The *iyl* database contains the following tables:
 - *sqmle_nsb_data_table*: the main table storing NSB data collected from all stations in *real-time*
 - non_night_sky_events: record of non-night-sky events
 - non_night_sky_events_category: list of category of non-night-sky events
- Normal user can only edit the *non_night_sky_events* table

NSB database - User login

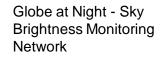
- Training dataset:
 - IP address: http:// (to be announced in the workshop) /iyl-adminer.php
 - Login username: (to be announced in the workshop)
 - Password: (to be announced in the workshop)

- The training database contains the following tables:
 - sqmle_nsb_data_table_training
 - non_night_sky_events_training
 - non_night_sky_events_category_training
- They have the same data structure as the real one
- The table *sqmle_nsb_data_table_training* stores more than 340,000 entries:
 - 1 urban (HK1) and 1 rural (HK2) stations in Hong Kong
 - Cover multiple lunar cycles and different weather conditions in late-2012 and recent months
 - The recent data collected from Tokyo (AOJ) and Taipei (TAM) are also included

• Table *sqmle_nsb_data_table* has the following fields for each entry:

Column	Туре
id	bigint(20) unsigned Auto Increment
created	datetime
received_utc	datetime
received_adjusted	datetime
<pre>sqmle_serial_number</pre>	int(11) NULL
nsb	double [9999]
sensor_frequency	double [0]
sensor_period_count	double [0]
sensor_period_second	double [0]
temperature	double [9999]
time_of_resend	int(11) [0]
device_code	varchar(255) NULL
request_time	datetime [0000-00-00 00:00:00]
status	enum('success','failure') [success]

• Only the following fields are useful for basic analysis:


field	format	description
id	number	Unique ID of each entry
received_utc	YYYY-MM-DD HH:MM:SS	NSB data date & time in <u>UTC</u>
received_adjusted	YYYY-MM-DD HH:MM:SS	NSB data date & time in local time
nsb	number	Raw NSB value
device_code	character	Station code indicating the location
status	"success" or "failure"	Always select "success"

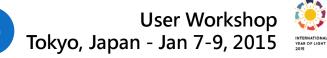
🤶 COSMIC

INTERNATIONAL YEAR OF LIGHT

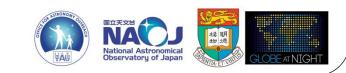
8

Basic analysis

- Before conducting the analysis, we assumed:
 - Data collected during non-routine lighting events or on-site maintenance / servicing periods (i.e. events with *reading_affected* = yes) were removed
 - Sunlight affected data were avoided if needed
- Will be considered:
 - Excluding unphysical NSB readings
- Not considered yet:
 - Moonlight contribution
 - Scattered city light from clouds
 - Aging of SQM-LE's filter
 - Light attenuation of glass window
 - Other sources of error

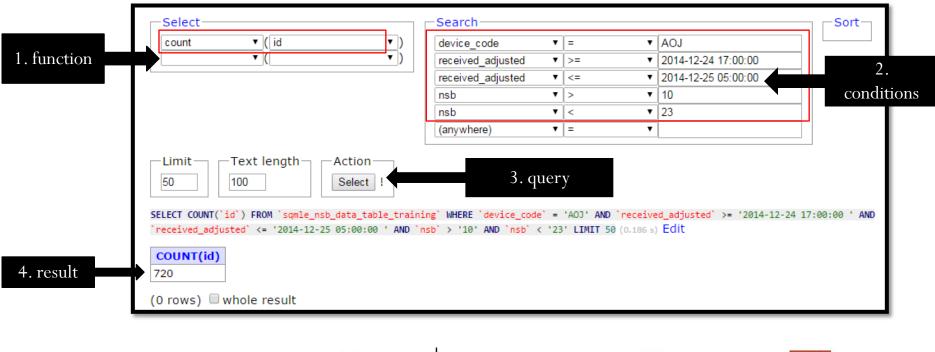


Basic analysis - Statistics


• *adminer* provides the following built-in functions to perform basic statistics:

function	target field(s)	description	
avg	nsb	Calculate the average	
count	id	Count the number of entry (sample size)	
count distinct	(any)	Count the number of distinct entry (sample size)	
max	nsb	Return the maximum	
min	nsb	Return the minimum	

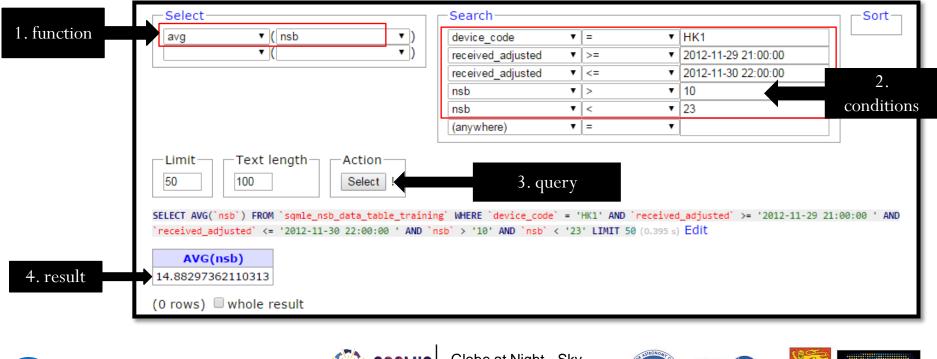
10



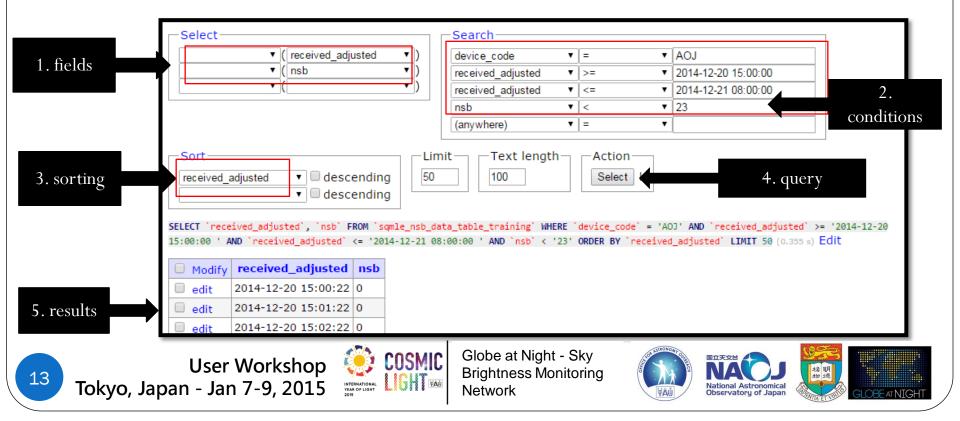
Basic analysis - Statistics

• Example 1:

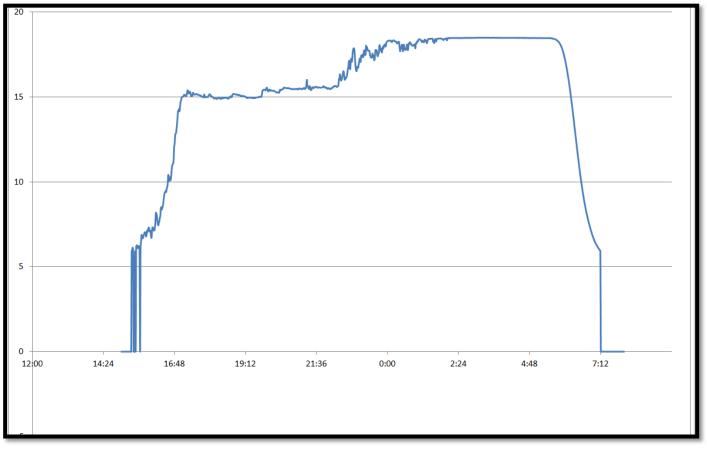
• Count the <u>sample size</u> collected from AOJ between 2014-12-24 17:00:00 and 2014-12-25 05:00:00 local time



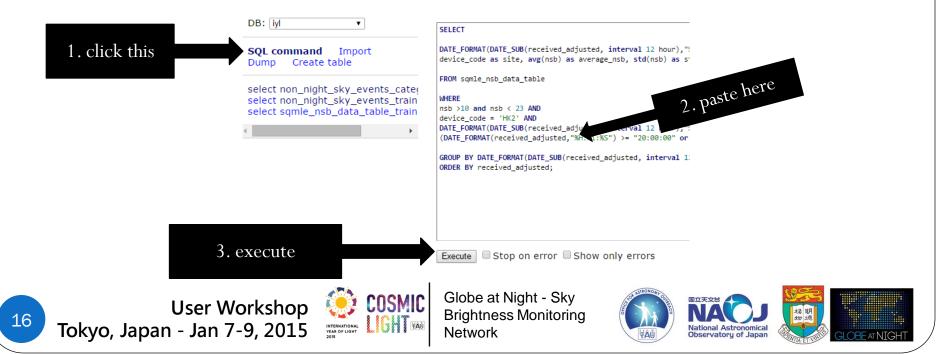
Basic analysis - Statistics


- Example 2:
 - Calculate the **average of NSB** collected from HK1 between 2012-11-29 21:00:00 and 2012-11-30 22:00:00 local time

- Aim: plot the NSB light curve of a particular night of a particular station to study the short-term time variation of NSB
- Example 3:
 - Time period (local time): 2014-12-20 15:00:00 2014-12-21 08:00:00
 - Location: AOJ


• Export data to csv (or other formats)

	edit	2014-12-20 15:47:22	7.01			
	🔲 edit	2014-12-20 15:48:22	7.04			
	🗆 edit	2014-12-20 15:49:22	7	port		
((1,020 rows) whole result 6. export					
Γ	-Modify -	Selected (0)		Export (1 020) Import		
	Save	Edit Clone De	lete	save ▼ CSV, ▼ Export		
	Page: 1.2	3 4 5 21 Load m	ore d	ata		


• Plot in Excel (or other software)

- Aim: plot the nightly average NSB of a particular station to study the long-term time variation of NSB
- Example 4:
 - Date period: from 2012-10-01 to 2012-10-31
 - Time window (local time): from 20:00:00 to 05:00:00
 - Location: <u>HK2</u>
 - Calculate the nightly average NSB by <u>MySQL commands</u> from the following template (after setting the above parameters, execute the calculation by copying and pasting the codes in the *SQL command* box):

SELECT

```
DATE_FORMAT(DATE_SUB(received_adjusted, interval 12 hour),"%Y-%m-%d")
as date,
device_code as site, avg(nsb) as average_nsb, std(nsb) as std_nsb,
count(id) as smaple_size
FROM sqmle_nsb_data_table
WHERE
nsb >10 and nsb < 23 AND
device_code = 'HK2' AND
DATE_FORMAT(DATE_SUB(received_adjusted, interval 12 hour),"%Y-%m-%d")
between "2012-10-01" and "2012-10-31" AND
(DATE_FORMAT(received_adjusted, "%H:%i:%S") >= "20:00:00" or
DATE_FORMAT(received_adjusted, "%H:%i:%S") <= "05:00:00")
```

```
GROUP BY DATE_FORMAT(DATE_SUB(received_adjusted, interval 12
hour),"%Y-%m-%d")
ORDER BY received adjusted;
```


User Workshop Tokyo, Japan - Jan 7-9, 2015

• Export data to csv (or other formats)

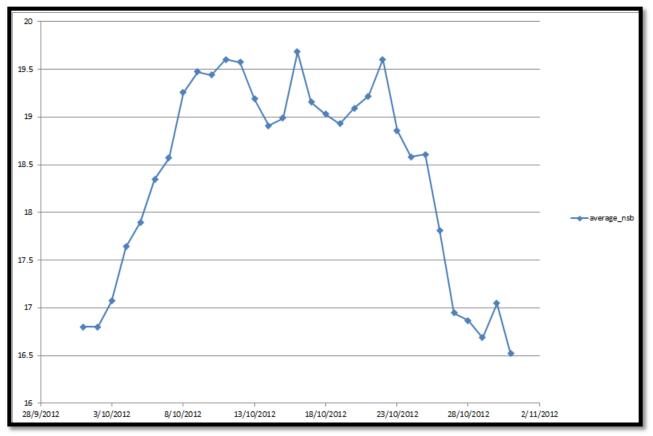
2012-10-25	HK2	18.610386178861788	0.9441538417451565	492	
2012-10-26	HK2	17.815496957403628	1.002082216816823	403	4. results
2012-10-27	HK2	16.94540489642188	0.6210215567208585	531	
2012-10-28	HK2	16.867415254237297	1.0692015936683192	472	
2012-10-29	HK2	16.688022727272724	0.7412746696381254	440	
2012-10-30	HK2	17.048747433264897	0.3584100640221845	487	
2012-10-31	HK2	16.519117043121145	1.5258796367906504	487	
				·	

31 rows (0.541 s) Edit, EXPLAIN, Export

5. export

SELECT

DATE_FORMAT(DATE_SUB(received_adjusted, interval 12 hour),"%Y-%m-%d") as date, device_code as site, avg(nsb) as average_nsb, std(nsb) as std_nsb, count(id) as :



User Workshop Tokyo, Japan - Jan 7-9, 2015

• Plot in Excel (or other software)

User Workshop Tokyo, Japan - Jan 7-9, 2015

19

Basic analysis - Geographical variations of NSB - Cross-city analysis

- NSB would vary significantly among locations due to the difference in light pollution conditions
- Aim: study the geographic variations of NSB across different locations / cities from single-night light curves
 - Method: repeat the steps in example 3 for different stations then compare their light curves
- Cautions!
 - Effects of cloud / Moon would lead to completely different results
 - e.g., Station A (cloudy) vs station B (clear) => station A is brighter
 - => A is more light-polluted?
 - e.g., Station C (full Moon) vs station D (new Moon) => station C is brighter
 - => C is more light-polluted?

