
User Workshop Tokyo, Japan - Jan 7-9, 2015

Project background The Globe at Night - Sky Brightness Monitoring Network

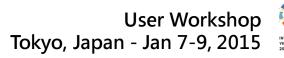
Dr Jason Chun-Shing PUN (潘振聲), Dr Chu-Wing SO & Ryan W.Y. LEUNG, The University of Hong Kong

- The **Globe at Night** program (http://www.globeatnight.org/)
 - an international citizen-science campaign to raise public awareness of the impact of light pollution
 - inviting citizen-scientists to measure their night sky brightness and submit their observations from a computer or smart phone

User Workshop Tokyo, Japan - Jan 7-9, 2015

- The Globe at Night Sky Brightness Monitoring Network project
 - Our team has been studying light pollution in Hong Kong by through measuring the night sky brightness (NSB) since 2003.
 - We conducted a citizen-science NSB measurement campaign between 2007 2009.
 - It was succeeded by a comprehensive NSB monitoring network in 2010 (NSN, Please refer to Dr So's talk)
 - This project was initiated as a University of Hong Kong Knowledge Exchange (KE) program "Promoting light pollution education and research worldwide"

- The Globe at Night Sky Brightness Monitoring Network project
 - Endorsed by the IAU Executive Committee Working Group for the IYL as a major Cosmic Light program
 - In the award letter from IAU, it states "Suggestions were to coordinate ... with others who are pursuing the educational aspect in other regions."
 - Built on the successful Globe at Night participation model, we hope to establish a worldwide night sky brightness monitoring network (NSN).



- The Globe at Night Sky Brightness Monitoring Network project
 - Partners (a quickly expanding list):
 - IAU Office for Astronomy Outreach,
 - National Astronomical Observatory of Japan (NAOJ),
 - HKU,

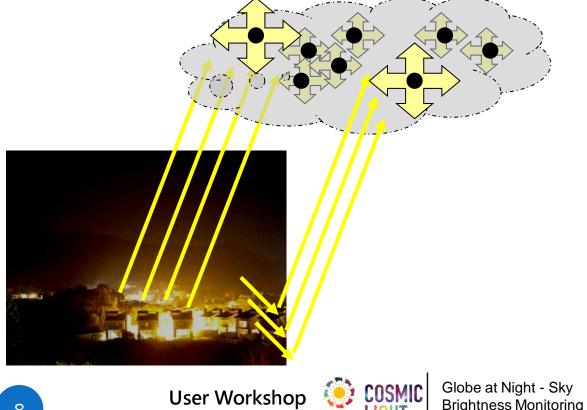
.

- Globe at Night,
- Ho Koon Nature Education cum Astronomical Centre,
- Project website: <u>http://globeatnight-network.org/</u>

- The Globe at Night Sky Brightness Monitoring Network program
 - Set up a global night sky brightness monitoring network using the commercial available meter SQM-LE for long term monitoring of light pollution.
 - A real time map of light pollution available on the project website.

User Workshop Tokyo, Japan - Jan 7-9, 2015

Target groups


- 1. Astronomical community: Professionals, amateurs, planetarium and observatory staff
- 2. Environmental community: Ecological professionals (e.g. specialists on insects, birds, nocturnal marine species, etc), environmental enthusiasts, environmental advocates
- 3. Education community: students and teachers of astronomy, planetary science, and environmental science
- 4. General public: government officials, policy makers, opinion leaders, citizen-scientists

Light pollution

- Light Pollution is the improper use of artificial outdoor lightings which leads to adverse effects on the environment.
- Wasteful light emitted upwards directly by or reflected from artificial sources being scattered by aerosol (cloud, fog), or pollutants like suspended particulates in the atmosphere.

The Earth at Night (2012)

Image courtesy of NASA Earth Observatory/NOAA NGDC

User Workshop Tokyo, Japan - Jan 7-9, 2015

The Earth at Night – Hong Kong (2012)

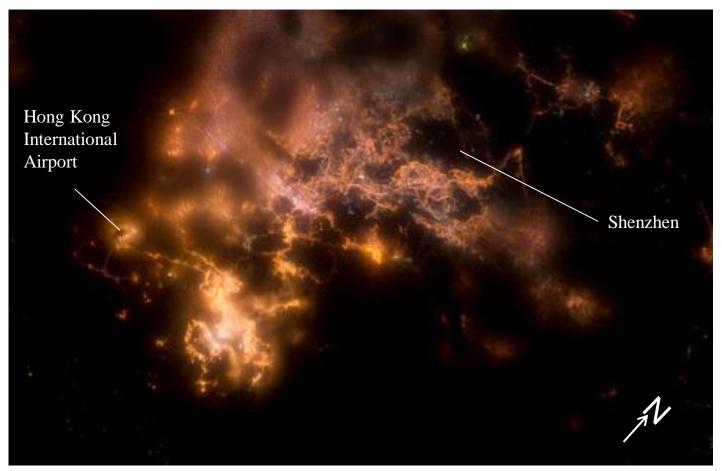


Image courtesy of Image Science and Analysis Laboratory, NASA-Johnson Space Center, The Gateway to Astronaut Photography of Earth

User Workshop Tokyo, Japan - Jan 7-9, 2015

10

The Earth at Night – Taiwan (2014)

Image courtesy of Image Science and Analysis Laboratory, NASA-Johnson Space Center, The Gateway to Astronaut Photography of Earth

User Workshop Tokyo, Japan - Jan 7-9, 2015

The Earth at Night – Taipei (2012)

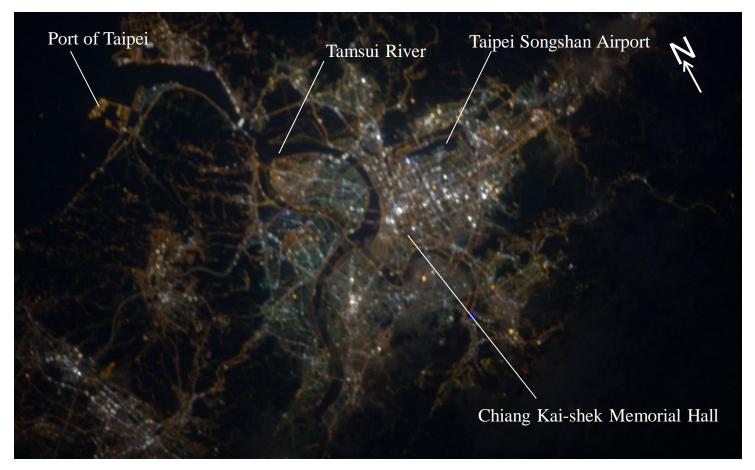
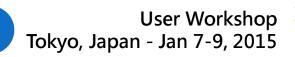


Image courtesy of Image Science and Analysis Laboratory, NASA-Johnson Space Center, The Gateway to Astronaut Photography of Earth



The Earth at Night – Korea (2014)

Image courtesy of Image Science and Analysis Laboratory, NASA-Johnson Space Center, The Gateway to Astronaut Photography of Earth

The Earth at Night – Seoul (2004)

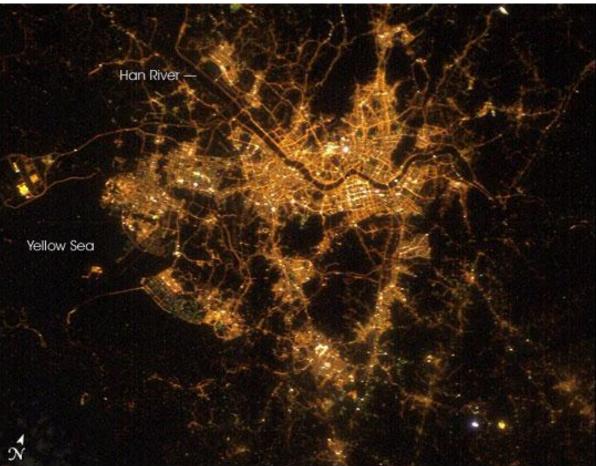
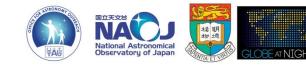



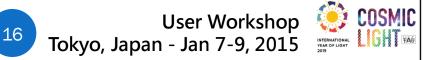
Image courtesy of Image Science and Analysis Laboratory, NASA-Johnson Space Center, The Gateway to Astronaut Photography of Earth

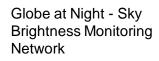
User Workshop Tokyo, Japan - Jan 7-9, 2015

14

The Earth at Night – Manila (2003)

Image courtesy of Image Science and Analysis Laboratory, NASA-Johnson Space Center, The Gateway to Astronaut Photography of Earth





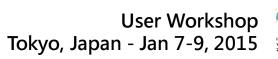
The Earth at Night – Tokyo (2008)

Image courtesy of Image Science and Analysis Laboratory, NASA-Johnson Space Center, The Gateway to Astronaut Photography of Earth

The Earth at Night – Tokyo (2008)

Image courtesy of Image Science and Analysis Laboratory, NASA-Johnson Space Center, The Gateway to Astronaut Photography of Earth

User Workshop Tokyo, Japan - Jan 7-9, 2015



Light pollution & Night Sky Brightness

- Adverse effects of light pollution:
 - Health: light trespass, light nuisance
 - Environmental: nocturnal species, unbalance ecological systems
 - Energy: light not targeted at your eyes \rightarrow wasted energy
 - Astronomical: skyglow / "overglow" from urban lighting
- Skyglow increases the night sky brightness
 decrease the brightness contrast of the night sky
 reduce the number of star visible by naked eye
 - \rightarrow reduce the accuracy of astronomical observations

Measuring Light Pollution

- Globe at Night (and other similar programs)
 - counting of number of stars visible in certain constellation

Magnitude 1 Chart

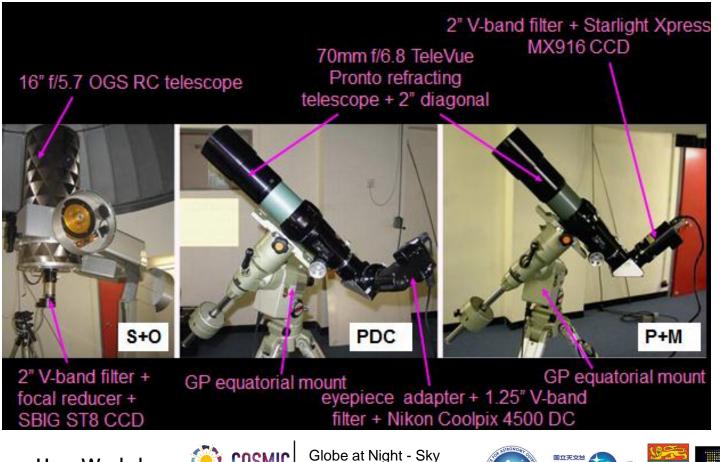
Magnitude 7 Chart

Some environmental pressure group in Hong Kong measures the street light level using luxmeters.

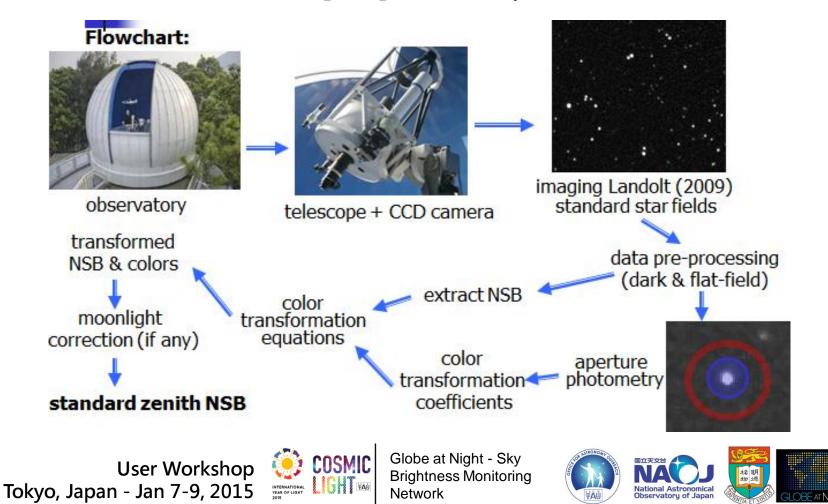
Measuring Light Pollution

"Star-counting" survey

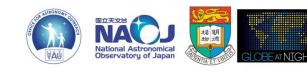
- Advantages:
 - Large geographical & temporal coverages with low cost
 - Light pollution conditions near places of human activities
 - Wide spread of the dark sky conservation message
- Disadvantages:
 - Photometric error is very large (±1.2 mag arcsec⁻²) (Kyba et al. 2013)


GaN a huge success as a citizen-science campaign

• Astronomical technique (our different settings in 2003-07)


User Workshop Tokyo, Japan - Jan 7-9, 2015

• Astronomical technique (photometry)



CCD photometry

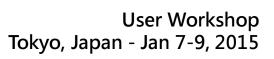
- Advantages:
 - Photometric error is very small (<0.1 mag arcsec⁻²)
 - Multiple bands measurement (if used with a filter wheel)
 - Easy comparison with historical records
- Disadvantages:
 - High cost (trained personnel, sophisticated equipment)
 - Limited geographical & temporal coverages
 - Challenging to do in an urban setting

A key to success is to reduce the "cost"

- Hand-held devices from advancement of solid-state sensor:
 - DigiLum luminance meter, Mark Light Meter, Sky Quality Meter (SQM), etc
 - Smartphone app:

Handheld devices

- Advantages:
 - Fairly accurate (±0.1 mag arcsec⁻²)
 - Low cost (~USD 300 per unit) and ease of usage
 - High data sampling frequency (several seconds)
 - Can work effectively in both urban and rural environments
- Disadvantages:
 - Single and non-standard wavelength passband (though the SQM magnitude is gaining popularity in light pollution circles)
 - Only accurate near zenith(?)



Handheld devices

- We believe an international SQM network provides the best compromise for cost, ease-of-use, geographical coverage, and temporal monitoring.
- From personal experience: While to the public the success of the project may depend on the data quantity (minimizing the dead-time), *maintaining data quality is more important*.
- E.g., the maintenance of the equipment (meter + shielding), a uniform and scheduled calibration scheme across the project, minimize data collected with "non-night-sky" factors not documented. (More on these in Dr So's talks)

Let's work together to preserve our dark sky!

Thank you!

27

